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Results

• Utilizing the combination of CMR sequences 
will allow a more robust and accurate diagnostic 
information for myocardial infarction[1] .

• The inter-observer variation of manual scar 
segmentation is high with a reported Dice score 
of 0.5243±0.1578[1].

• This study proposes a fully automated approach 
by utilizing deep convolutional neural networks 
to delineate left vertical (LV) blood pool (BP), 
right ventricle (RV) BP, LV normal 
myocardium (NM), LV myocardial edema (ME) 
and LV myocardial scars (MS). 
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We utilize a non-rigid random warping and a 
random rotation scheme to augment our data.
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We utilize three different architectures including U-net[2], MaskRCNN[3], and U-net++[4] with different 
input blocks for each model. The results are averaged from the three networks for LV ME+MS and LV 
MS and followed by a binary activation with threshold 0.5.

We encode the input and label sequences and 
produce five input blocks for network module.

The linear decoder performs linear subtraction for 
predicted masks from the network module and includes 
a binary myocardium constraint for LV ME and LV MS.

The proposed method is evaluated over images 
acquired from a total of 20 cases including CMR 
sequences after trained and validated using 25 cases.


